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Abstract A general description is given of the mathematical modelling of physical
properties of liquid mixtures, with an emphasis on the early progress in mathematical
representation of mixtures’ thermodynamics. The core issue is employing long poly-
nomials to represent mixing data accurately, without having to optimise a large number
of independent parameters. This is for instance done by deriving the long polynomials
from explicit (analytical) models with few independent parameters. It is shown that
this field evolved not by gradual changes in model complexity and accuracy, but rather
in bursts, followed by pausing for several years or decades whenever researchers hit
computational or conceptual limitations. One such limitation that still exists is the
Taylor expansion of the above mentioned analytical models. This article presents a
novel use of Pascal’s triangle that turns this computationally “hard” problem into a
trivial iterative procedure, suitable for standard office spreadsheets. The process of
transforming this hard problem into a soft problem may be described as deciphering.
The present author conjectures that for every parametric function for which a poly-
nomial expansion can be made, there is a corresponding coefficient pattern involving
Pascal’s triangle and/or other binomial sequences and matrices.

Keywords Quasichemical · Pascal’s triangle · Polynomial coefficient · Pattern

1 Introduction

The history of modelling the physical properties of liquid mixtures stretches more
than 100 years back in time, and from the start the prime focus was on binary mixtures
(i.e. two liquids), since these were the first to be studied experimentally, and
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corresponding models could be kept relatively simple. To bring more system into
this, the mixing ratios would be given as atomic (or molecular) fractions, and the sum
of all molecular fractions is always one. In the early days, the letter “n” was typically
used to denote fractions, while modern terminology prefers the letter X . Thus, for
mixture of liquids A + B, the fractions X A + X B = 1, and the x-axis is by convention
reserved for the variable X B over the range from 0 (pure A) to 1 (pure B).

Gradually, all aspects of mixing became subject to studies; densities, viscosities,
electrical conductivities, heat-of-mixing, vapour pressures, etc. These are customarily
assigned to the y-axis. For the simplest cases it was found that the property in question
varied linearly with X B , assuming the value corresponding to pure A and pure B at
fraction 0 and 1, respectively. This gave rise to a number of “laws” that simply reflect
this rather mundane observation, which in many respects might serve as a sufficient
definition of “ideal behaviour”. And the linear approximation is sufficiently accurate
for many purposes. However, as experimental studies gradually became more precise,
it was found that some properties of some mixtures would deviate from the linear rela-
tionship. In it’s simplest form the deviation would form a symmetrical “∪” (or “∩”),
but it could also exhibit asymmetrical shape. Any deviation (from linearity) needed
to be modelled separately, thus giving rise to the concept “excess mixing property”,
which is essentially the observed deviation from the linear “ideality” (Fig. 1), i.e. the
observed property as function of atom fraction, minus the weighted average of the
properties of the two pure components.

Before proceeding, one complication should be pointed out: A mixture which com-
position dependency is linear with respect to e.g. electrical conductivity will not be
linear with respect to the inverse property (resistivity), and vice versa. It is not imme-
diately obvious which of them (conductivity or resistivity) to choose, and this type

Fig. 1 Two imagined mixtures A + B and A + C drawn in order to explain why polynomial approximations
expanded around X = 0 may be preferable to explicit Quasichemical Model equations: The parameters of
the explicit equations are very different for these two mixtures, thus giving no indication that they are very
similar in the region X = 0.0 to X = 0.3. But the two polynomials expanded around X = 0 will exhibit
coefficients (for the lower terms) that immediately reveals the similarity (circle)
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of dilemma has led to some scientific debate [1]. The convention is to describe the
property on a form that correspond to thermodynamic ideality (or to any other mea-
sure for ideality at the atomic level). It should be noted finally, that for a selected
few mixing properties (i.e. entropy �SM I X and Gibb’s energy �G M I X ), the thermo-
dynamic ideality does not generate a linear “baseline” but a curved one. But for the
vast number of mix properties, the ideal “baseline” is linear, and the curved deviation
can be analysed in the form in which it is commonly available. In this respect, the
mixing property heat-of-mixing (�HM I X ) is particularly uncomplicated, since the
ideal “baseline” is flat (zero) for all molecular fractions, i.e. the heat-of-mixing and
the excess-heat-of-mixing are identical.

Approaching from the fundamental side, Herzfeld and Heitler [2] used atomistic
considerations to derive a primitive symmetrical quasichemical model that effectively
treats the mixing entropy and the mixing enthalpy separately. This model, which suc-
cessfully accounted for the symmetrical U shape of the heat-of-mixing for a large
number of binary mixtures, has later been inappropriately attributed to Hildebrand,
whose contribution was merely to coin a term (“Regular solutions”) for mixtures that
fit Herzfeld’s model, and to assemble and summarise some empirical case evidence.
This case evidence suggested that Herzfeld’s “regular” model is fulfilling for mixtures
of two fairly similar liquids, while the “ideal” model (when applied to heat-of-mixing)
required the two liquids to be near identical. While the 2nd order polynomial
derived from Herzfeld’s model represents no computational challenge, problems were
to emerge when Guggenheim [3–6] took the obvious next steps, which were to gener-
ate successive model modifications that account for the heat-of-mixing of increasingly
dissimilar liquids; the ones that tend to exhibit V shapes. These shapes are not easily
dealt with by using polynomials, which is why other (analytical) formulae came to
prominence. This article will show how polynomials can be generated for these cases
of V shaped deviations from ideal mixing, but will limit the discussion to the simpler
case of symmetrical V shapes. The more complicated case of asymmetrical V shapes
is to be discussed in an upcoming article.

Between 1935 and 1940, with contributions from Rushbrooke [4] and Fowler,
Guggenheim came up with a set of refined “quasichemical” thermodynamic formu-
lae, where the subtle interactions between heat-of-mixing and entropy had been taken
into account [5]. Like Herzfeld’s formulae, this model was derived from atomistic
considerations of perfect mix-crystals under constant volume assumptions, but also
employed approximations from gas theory (the “lattice gas” approximation). This led
to a slightly schizophrenic model, which on its own could not make quality predic-
tions for the mixed crystals from which it was derived, and also was not really relevant
for gases. However, if one was willing to accept empirical use of these formulae,
e.g. let the parameter for “atomic coordination” assume impossible values like 50,
then the Guggenheim formulae had an empirical potential for describing liquid mix-
tures with unprecedented high precision. In light of the potential for high precision,
Guggenheims rather humble term for his model, “the first order approximation”, may
in retrospect seem understated or even paradoxal, since for the next 40 years (or so)
all work derived from his model would be approximations to his “approximation”.

In the following decade or two, many scientists with interest in theoretical (math-
ematical) chemistry pursued the empirical potential of Guggenheim’s so-called “first
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order approximation” formulae, by deriving Taylor polynomial expansions (Eq. 10).
One particular and important advantage of using approximate polynomials it that
polynomial empirism is readily extended to ternary and higher order mixtures (i.e.
multi-component liquids). In this era, scientific computers (of any type) were absent,
pocket calculators had not been invented, so available computational devices were
restricted to pen, paper and slide rules. Thus, scientists [7] were bound to embark
on a lenghty pencil-and-paper Taylor expansion journey; this was straightforward but
“increasingly tedious and complicated” [8]. In fact, this tedious task turned out to
be outright mountainous, and work eventually petered out; from the late 1950 s and
onwards, researchers would settle for using only the first three or so polynomial terms.
By the 1960 s, a technique was developed and flourished briefly [9], whereby the mix-
ture’s composition range (fractions between 0 and 1) was divided into several smaller
ranges that were modelled separately. This kind of empirism was so far removed from
the direction Guggenheim and Herzfeld must have envisioned, that one can definitely
say the development had come “off the tracks”.

Since the late 1970 s, computational resources became increasingly available and
affordable to the scientific communities, and by early 1990 they were available even
to students, and were about to permeate and eventually become ubiquitous within all
scientific disciplines. There was (and is) still development on Quasichemical Model-
ling (QM), which was now the common term for derivatives of Guggenheim’s “first
approximation”, and also a lot of developments on the use of polynomials for model-
ling the effects of mixing. It therefore seems a bit surprising that no progress was made
regarding Taylor expansions of the symmetrical quasichemical formulae of Guggen-
heim.

2 Formulae to be studied

To clarify this absense of progress, this author undertook a computational Taylor
expansion, employing software that could do exact algebraic calculations (including
integration and derivation) in seconds, that would have taken days or months back in
the 1940 s. The goal was to generate a large polynomial for Guggenheims formula for
the two mixing deviations known as excess Gibbs free energy of mixing (�G E

M I X ),
and the heat-of-mixing �HM I X . For reasons of formulaic clarity, this article will deal
with the quantities �G E

M I X/z RT and �HM I X/z RT . For the purposes of this article,
z RT is just a scaling constant. Guggenheims’s �G E

M I X/z RT and �HM I X/z RT are
similar in that (for specific parameter values) both can exhibit those difficult V shapes,
the latter typically more than the former. But from a computational perspective, the
immediate and seemingly easier task was to expand a related quantity known as the
partial molar free energy of liquid B, for which Guggenheim’s Quasichemical Model
provided the following explicit (“exact”) formula (written in modern notation)

�G
E
B

z RT
= ln

√
β − 1 + 2X B

(β + 1) X B
(1)
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This �G
E
B

z RT is proportional to the natural logarithm ofthe activity coefficient for compo-
nent B, and is derived from the Gibbs free energy of mixing (�G E

M I X ) by the following
universally valid relation

�G
E
B

z RT
= �G E

M I X/z RT + (1 − X B)
∂�G E

M I X/z RT

∂ X B
(2)

Fairly obviously, the partial molar free energy is defined for both liquid components
(A and B), and the corresponding quantity for component A is (conveniently) given
by substituting A for B in Eq. 2, to obtain

�G
E
A

z RT
= �G E

M I X/z RT − X B
∂�G E

M I X/z RT

∂ X B
(3)

Thus, Guggenheim’s model is not only physically symmetric, but also formalistically
symmetric. Once polynomial expansions have been made for these two quantities,
using Eq. 1, the polynomial formula for the excess Gibbs free energy of mixing can
(in principle) be made explicit by means of the following much simpler formula

�G E
M I X/z RT = X B

�G
E
B

z RT
+ (1 − X B)

�G
E
A

z RT
(4)

but in practice, formula this Eq. 4 does not always work well with approximate poly-
nomials. Special precautions may be needed to counteract truncation errors, which
arise when high order terms are omitted. This will be detailed in an upcoming article.
The term β is a function of composition and the “ordering” parameter λ

β = √
1 + 4 (1 − X B) X Bλ (5)

Thus, �G
E
B

z RT is a function of variable X B , with only one parameter (λ). Moreover, a

polynomial expansion of �G
E
B

z RT (and consequently its parent �G E
M I X/z RT ) may have

any number of polynomial terms but is still defined only by X B and the λ parameter.
Note that when the ordering parameter λ approaches -1 (which happens for many
real mixtures) then the two deviations (�G E

mix and �Hmix ) both begin to exhibit the
challenging V shapes. Obviously, each of the Eqs. 1–5 have an analogue involving
�Hmix (instead of �G E

mix ), such as

�HB

z RT
= �HM I X/z RT + (1 − X B)

∂�HM I X/z RT

∂ X B
(6)

3 The wagner polynomial formalism

The particular interest in Taylor expanding both Eq. 1 and its heat-of-mixing equiva-
lent Eq. 13 around X B = 0 (i.e. X A = 1) arise partially because X A = 1 was the basis
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of the widespread polynomial description of mixtures’ thermodynamics established
by Wagner since the early 1950 s. Unlike Guggenheim’s model, the empirical Wagner
polynomials are inherently asymmetric; since one component is defined as solvent,
and all other components as solutes. This “Wagner formalism” [10] was invented and
intended for steel and other multi-component metals (alloys) where one component
(the solvent metal) dominates. The composition of the alloys was naturally defined by
the amount of alloying elements, thus for the pure solvent X B = XC = X D = · · · = 0.
One advantage of the Wagner polynomial formalism (and derivated formalisms) is
illustrated in Fig. 1. In this Figure, two imagined mixtures A + B and A + C behave
very similarly close to the pure solvent (component A), but the two mixtures become
very different when the amount of A decreases. In this case, the parameters of the
explicit Quasichemical equations are very different for these two mixtures, thus giv-
ing no indication about their similarity between X = 0.0 and X = 0.3 (circle). But
two polynomial approximations expanded around X = 0 will exhibit coefficients (for
the lower terms) that immediately reveals the similarity.

The applicability of Wagner formalism is strictly limited to low-alloyed metals, but
was later extended to higher alloys and other concentrated mixtures, but this process
saw some disarray in the 1970 s and fell short of accurate prediction for all possi-
ble mixtures, which remains the ultimate goal, to this day. Instead, various ways of
re-formulating the polynomials (and there are numerous different ways) were explored,
usually to make some specific calculation more straightforward, but invariably at the
expense of slowing down some other type of calculation. Despite this, the polynomial
approximations remained attractive for modelling mixtures due to the potentially large
benefits and the ever increasing availability of computing resources. However, effective
penetration of the polynomial methods into the realms of high-accuracy multi-com-
ponent mixture prediction did not gain momentum until the late 1980 s, when Pelton
& Bale’s invention of the “coefficiently efficient” formalism UIPF1 [11] and Pelton &
Blander’s revival of the (explicit) Quasichemical Models [12] fortuitously coincided
with the advent of students desktop computing from the early 1990 s onwards.

4 The computations

During the 1990 s, this author undertook a computational Taylor expansion, employing
Maple V software on early Intel pentium PC’s. This software can do exact algebraic
calculations, including integration and derivation, in seconds, that would have taken
days or months back in the 1940 s. These computations were repeated recently, with
state of the art computers.

The author applied the above equation by substituting Eq. 5 into Eq. 1, and Taylor
expanding the result around X B = 0, thus the following six polynomial terms in X B

were generated (from Guggenheim’s formula) before the capabilities of the author’s
PC were exhausted.

1 As it is known today. Its unique characteristic is that it makes super-efficient use of its coefficients. Unlike
all other polynomial formalisms, UIPF coefficients have the same name and same value regardless of which
component is defined as the “solvent”. It’s very convenient, like keeping your phone number when you
switch network supplier.
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�G
E
B

z RT
= ln

√
1 + λ +

X B · −1

1
· λ +

X2
B · 1

2

(
3λ2 + λ

)
+

X3
B · −1

3

(
10λ3 + 6λ2

)
+ (7)

X4
B · 1

4

(
35λ4 + 30λ3 + 3λ2

)
+

X5
B · −1

5

(
126λ5 + 140λ4 + 30λ3

)

The three last terms were novel, going further than any previously published series of
terms derived by expanding polynomials of X B . The above expression contains the
following sub-series that is computationally hard to expand further:

λ +(
3λ2 + λ

)
+(

10λ3 + 6λ2
)

+ (8)(
35λ4 + 30λ3 + 3λ2

)
+(

126λ5 + 140λ4 + 30λ3
)

Subsequent attention was focused on this sub-series. One can clearly see indications of
a pattern, yet the coefficients for each λn rapidly become unpredictable as n increases,
and no particular pattern immediately comes to mind as being overwhelmingly con-
vincing. For brevity, we may re-write this series as a matrix of the coefficients from
each term (Fig. 2).

The author believed that repeating the Taylor expansion on a larger computer sys-
tem would add more coefficients to this matrix. Such attempts led to the disappointing
conclusion that the computational limitation was in the software itself. The larger com-
puter system calculated polynomial terms more swiftly, but the software was unable
to allocate enough memory to proceed beyond six polynomial terms. Other QM for-
mulae, such as Guggenheims formula for the Enthalpy of mixing, would yield one
or two terms more, but again the memory capabilities of Maple V would inevitably
become exhausted.

126 35   10    3    1
140   30   6    1

30   3 

Fig. 2 Matrix of coefficients from each term of the computationally hard part of the Taylor polynomial
expansion for Eq. 1 around X B = 0
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Part of the problem is that expanding Guggenheims formula for �G
E
B

z RT around X = 0
lead to 0/0 expressions.

f (0) ≡ �G
E
B

z RT
= ln

√
β − 1 + 2X B

(β + 1) X B

f (1) ≡ ∂ f (0)

∂ X B (9)

f (2) ≡ ∂ f (1)

∂ X B· · ·
f (n) ≡ ∂ f (n−1)

∂ X B

which are required for the Wagner type Taylor polynomial expansion

�G
E
B

z RT
= f (0)(xB = 0) + X B

f (1)(xB = 0)

1! + X2
B

f (2)(xB = 0)

2! + · · ·

+Xn
B

f (n)(xB = 0)

n! + · · · (10)

To circumvent this, MAPLE was set to calculate the limit (of these expressions) as
X → 0. This seems to require exponentially larger memory as the order of the desired
term is increased. Thus, even the leaping progress in computer and software capabil-
ity during the 1990 s could only add three extra terms beyond the three that had been
known for decades.

5 Pascal’s triangle

As seen in the displayed polynomial (7), the Taylor expansion of various formulae gen-
erates arrays of coefficients. As is well known, such coefficient arrays often presents
a pattern. Two well known examples are the expansion of the eX function (around
X = 0)

eX = 1 + X

1! + X2

2! + X3

3! + X4

4! + · · · . (11)

and the ln(X) function (around X = 1)

ln(X) = (X − 1) − (X − 1)2

2
+ (X − 1)3

3
− (X − 1)4

4
+ · · · . (12)

which both yield very obvious coefficient patterns. With parametric functions such as
Guggenheims’s, patterns are likely to be more complex (and less obvious), and it is no
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1    1    1    1    1    1
6    5    4    3    2    1
15  10   6    3    1 
20  10   4    1
15    5    1
6     1

Fig. 3 Matrix of the first (lowest) numbers of the remarkably versatile Pascal triangle

surprise that the three terms that [9] expanded from Guggenheim’s model, were too
few to indicate a pattern of coefficients.

However, the three additional terms identified by the initial Taylor expansion for
the present article, provided just enough coefficients to reveal a faint trace of a pattern,
but not enough to identify it with any certainty. Thus, further efforts were justified.
But at this point, there was no obvious cure for the software limitations that halted the
computational polynomial expansion.

Thus, after reaching a dead end with Guggenheim’s �G E
M I X formula, present

Eq. 2 was instead applied to Guggenheim’s �HM I X formula, to generate a derivative
quantity (analogous to Eq. 1), being suitable for Taylor expansion. This derivative
quantity, also defined by the variable X B and only one non-scaling parameter (λ), was
much more complicated in appearance than (1). Despite this apparent complexity,
the Taylor expansion proceeded at blazing speed and yielded 14 polynomial terms
before the expected slow-down, providing about 60 coefficients. When these were
arranged in a matrix of coefficients, a pattern emerged : Row after row was compel-
lingly familiar, each having an unmistaken counterpart within the Pascal’s triangle,
only mildly obscured by a factorial scaling factor. Apparently, this triangle (Fig. 3) was
first described [13,14] by indian mathematician Pingala, and much later (around year
1100) studied by persians Karaji and Khayyam, and chinese Yanghui. Later, Chinese
Zhu Shijie provided the most famous early illustration of the triangle. In the 1600s,
frenchman Blaise Pascal demonstrated its versatility, by applying it to successfully
develop the then novel field of probability theory.

6 Deciphering the polynomial “code” within Guggenheim’s �G
E
B

z RT

In short, from the above calculations the present author concluded that Pascal’s triangle
was an “ingredient” in the pattern obtained from the coefficient array yielded by the
Taylor expansion. The obvious next step was to “divide” the coefficient matrix with
the Pascal matrix, or (in more correct terms) perform an array division. i.e. divide each
element of the coefficient matrix by the corresponding element of the Pascal matrix.
Once this was done, a rather simple pattern emerged, and subsequent terms for this
polynomial could easily be predicted, using any spreadsheet software, requiring only
the most basic functionality. More importantly, the author had learnt how to decipher
the disguised patterns.
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126 35   10    3    1
35   10    3    1

10    3 

Fig. 4 Matrix of coefficients from Fig. 2, after each term is divided by the corresponding term of the
Pascal matrix. The resulting pattern is comparatively trivial, as it spells out another sequence hidden within
Pascal’s triangle

Using this same approach on the original six polynomial terms expanded from Eq. 1
immediately unveiled an unambiguous pattern that had been only vaguely indicated
by the original matrix.

Intriguingly, the 1, 3, 10, 35, 126,.. binomial series (Fig. 4) can itself be derived
from the versatile Pascal triangle, in the same way as the “higher” order Fibonacci
series [15], and the nth term of the series is given by (2n − 1)!/[n! (n − 1)!]. The
sequence, which is also known as the binomial coefficient “2n − 1 over n − 1” [16], is
a convolution of the Catalan sequence and the central binomial sequence [17], and it
appears in a multitude of other combinatorial situations, such as polygon mathematics
[18].

Following this discovery, it is a trivial task to derive (say) 100 polynomial terms
for Eq. 6 by literally any spreadsheet software. It is also conceptually straightforward
to show that a polynomial with terms derived from this binomial series (and Pascal’s
triangle), agrees with the corresponding “exact” expression (Eq. 1) from Guggenheim
to any desired accuracy, provided that a sufficient number of terms were included. The
coefficients for the first ∼ 15 polynomial terms of the expansion of Eq. 1 are identified
by means of an OpenOffice CALC spreadsheet shown in Fig. 5.

7 An accidental discovery

To summarise the present discovery, Eq. 2 was applied to Guggenheim’s �HM I X

formula, after which a Taylor expansion yielded a high number of terms, forming a
very obvious pattern, from which Pascal’s triangle was identified as the deciphering
“key”, allowing identification of the polynomial coefficients.

Subsequent deciphering of the polynomial patterns emerging from (1) (i.e. Eq. 2
applied to Guggenheim’s �G E

M I X formula) was now straightforward. However, it was
later found that when applying Eq. 2 to Guggenheim’s �HM I X formula, a typing error
had been made. Thus the Taylor expansion produced a polynomial that is irrelevant for
Guggenheims model. The Taylor expansion was therefore repeated, using the correct
formula (Eq. 13), this time producing fewer coefficients and no obvious pattern. Thus,
a philosophical paradox has occured ; if that typing mistake had not been made, then
the role of Pascal’s triangle as a deciphering “key” would probably not have been
discovered. Thus, this author encountered the same kind of accidental discovery that
repeatedly pushes science forward. It is well known that coincidents and sometimes
accidents leads to scientific progress in experimental disciplines such as chemistry.
But there are till now few (if any) published cases of progress occurring this way
within the more mathematically oriented disciplines, such as modelling.
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8 Deciphering the polynomial “code” within Guggenheim’s �HB
z RT

When the abovementioned mistake was discovered, the deciphering was repeated, by
first Taylor expanding Eq. 13, which is derived by applying Eq. 2 correctly to the
heat-of-mixing function from Guggenheim

�HB

z RT
= ln

√
1 + λ

(1 − xB)2(
1 + √

1 + 4xB(1 − xB)λ
)2

×
[

2

√
1 + 4xB(1 − xB)λ + 1 + 2xBλ√

1 + 4xB(1 − xB)λ

]
(13)

This time, about 10 polynomial terms were analytically identified before computations
slowed down. The coefficient matrix from these terms suggested a pattern that was
significantly more complex than patterns found in any of the two previous cases.

�HB

z RT
= ln

√
1 + λ

[
1 − xB · (2λ + 2) + x2

B ·
(

6λ2 + 7λ + 1
)

−x3
B ·

(
20λ3 + 28λ2 + 8λ

)
+ x4

B ·
(

70λ4 + 115λ3 + 48λ2 + 3λ
)

−x5
B ·

(
252λ5 + 476λ4 + 260λ3 + 36λ2

)
+x6

B ·
(

924λ6 + 1974λ5 + 1330λ4 + 290λ3 + 10λ2
)

−x7
B ·

(
3432λ7 + 8184λ6 + 6552λ5 + 1960λ4 + 160λ3

)
+x8

B ·
(

12870λ8 + 33891λ7 + 31416λ6 + 11970λ5 + 1610λ4 + 35λ3
)

− · · ·
]

(14)

In fact, it seems so complex (Fig. 6) that this author might not have detected the
presence of Pascal’s triangle within this matrix. But what had been learnt in the ear-
lier runs could not be unlearnt, and the author now assumed that the same “key” and
procedure would hold with only slight changes. By duly dividing with respect to the
Pascal matrix, the following matrix emerges (Fig. 7)

While this is still not a trivial matrix, it looks a lot more orderly than its parent.
Although its asymmetry makes it much less orderly than the very simple matrix (Fig.
4) that was derived from Eq. 1, the progression of the above series’ are still entirely
logical and unambiguous. An OpenOffice CALC spreadsheet is shown in Fig. 8, iden-
tifying the coefficients for the first ∼20 polynomial terms of the expansion of Eq.
13.

The uppermost sequence of Fig. 7 increases monotonously as (1, 6/3, 6, 20,
210/3, ..) and is defined by a0 = 1 and the recursive formula an = an−1(4n − 2)/n
where n is (1, 2, ..). The lowermost sequence of Fig. 7 is (1, 9/3, 10, 35, ..) and is given
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35161011970

16019606552

1029013301974

36260476252

34811570

82820

176

22

1

Fig. 6 Matrix of coefficients from each term of the computationally hard part of the Taylor polynomial
expansion (around X B = 0) for Eq. 13, as derived by applying Eq. 2 to Guggenheims model for the
heat-of-melting. The inherent numeric sequences of this figure are not obvious

35/3322342

32/3294312

1029/3266282

926/3238252

9/3823/3210

8/3720

17/36

16/3

1

Fig. 7 Matrix of coefficients from Fig. 6, after each term is divided by the corresponding term of the
Pascal matrix. The resulting pattern is still markedly complex compared to Fig. 4, but the inherent numeric
sequences are sufficiently long to be decipherable

by b0 = 1 and the recursive formula bn = bn−1(4n + 2)/(n + 1) where n is (1, 2, ..)
The intermittent numbers are found by linear interpolation, as is evident from Fig. 7.

One motivation for employing Guggenheim’s �HM I X (heat-of-mixing) formula
(through Eq. 13) rather than his �G E

M I X (through Eq. 1) to derive a polynomial
approximation, is that the former is more adept at describing the difficult V-shaped
mixing properties. Expressed differently, the former would require fewer polynomial
terms to successfully approximate a given V shape than the latter would, an obvious
advantage from a practical point of view. Thus, the V-shaped polynomial approxi-
mation for �HM I X (heat-of-mixing) may describe data from �G E

M I X experiments
more accurately than Guggenheim’s explicit model for �G E

M I X (and its polynomial
approximation)! This is the essence of empirism; that a function is applied according
to where it works best, not according to how it originated.

The discovery of the close relationship between these patterns and Pascal’s Trian-
gle, do not amount to a mathematical proof. The discovery bears more resemblance
with deciphering of secret codes. Indeed, as was verified using a spreadsheet software,
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the numeric disagreement between Eq. 1 or 13 and their polynomial approximations
converges steadily towards zero with increasing numbers of polynomial terms, and
at 32 terms the Model and the present approximations can be shown to be virtually
indistinguishable, as will be the topic of an upcoming article.

These patterns and the binomials defining them make it possible to determine any
desired number of coefficients for quasichemical polynomials with comparatively little
efforts. Any commercial mathematical worksheet may be used. Even the paper, pen-
cils and slide rules of the 1940 s would have yielded 10 or 100 times more polynomial
terms, for no extra effort. Finally, the Taylor expansion of Guggenheim’s formula for
�G

E
B

z RT was repeated recently, yielding one more analytical term than had been achieved
with a late 1990 s computer. It was no surprise to observe that this extra term, obtained
by analytical means, is identical to what is predicted numerically by the matrix patterns
published herein.

9 Concluding remark

Long polynomials can be employed to accurately represent the physical properties of
liquid mixtures. By deriving the long polynomials from explicit (analytical) models
with few independent parameters, the co-optimisation of a large number of indepen-
dent parameters can be avoided. For the thermodynamics of mixtures, the derivation
of such long polynomials by Taylor expansion is sometimes computationally “hard”.
This article presents a novel use of Pascal’s triangle that turns this computationally
“hard” problem into a trivial iterative procedure. This iterative procedure is used to
expand two equations that Guggenheim derived from his symmetric “First approxi-
mation” Quasichemical model. This Taylor expansion, which in the past had required
thousands of man–hours of tedious work, and pushes even today’s algebraic software
to its limitations, can now be performed with ordinary spreadsheet software, requiring
only its most basic functionality, and producing any desired number of polynomial
terms, only limited by the allowed spreadsheet size. The process of transforming this
hard problem into a “soft” problem may be described as deciphering. The discovery of
this Pascal deciphering was aided by an initial mistake by the author, and it is likely that
without this mistake, the author would not have discovered neither this deciphering
procedure, nor its key (Pascal’s triangle).
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